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NOTES ON MURPHY'S METHOD

C-",• !'d 1:!~i:-4', from Murphy, Ref. 1"

S+ (H-2/2-iw) & - (M+iwT) z = 0 (1)

where - , and H, M, and T are real, may be functions

of Iz1 2, and w is real, we wish to draw rigorously justified
conclusions about the nature of its family of solutions.

In the first place, the origin z = = 0 is a singular
point, a solution. The conditions for stability are well
known:

H> 0

(c 2 -4M) H2 > W 2 (2T-H)' (2)

with H, M, T evaluated at z = 0.

In the second place, it turns out that under certain
conditions there is one (or more) solution of the form

z = re ivt. with r and P constant, a periodic solution. We
postpone discussion for a bit.

In the third place we are interested in the following
situation, if it should occur:

There is a set of four real, smooth functions Xi(8 1,02)

each periodic in 01 and 02 with periods i/W I and i/W2 , respec-

tively, and for each choice of 010 020 there exist two real,

differentiable functions 0 1 (t) and 0 2 (t) such that 0i(O) = 0io

and with z = z + i z 2 , x1 = z1, x2 = z1, x3 = z2 ' x4 =

xi(t) = Xi(0 1 (t), 02 (t)) is a solution of Eq. 1 and the only

one with xi(0) = X1 (010,00 ). If this should be true, we

say that the vector function Xi(O 1 ",02) def'.nnc a p,.riodic

surface of Eq. 1.
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We know no way to establish the existence of such surfaces
for Eq. 1 as it stands. If, however, we are willing to regard
the nonlinearities and dissipative terms as small, definite
results can be established. We therefore work with

i- iW - Mz + E[(H-i/') & - (m+iwT) z] = 0 (3)

where M = constant, and H, m, T depend on Iz1 2 only, m(0) = 0.
We shall use this form in hunting for periodic solutions
(conical yaw) as well as periodic surfaces (steady mixed

oscillations). Let z = pe , then Eq. 3 is equivalent to
the pair:

Pý P2 + wp Mp + E[(H+pp/(l-_) Ps - mp] = 0 ()

pp + 2p'p - Wp + E[Hp9.-wTp] + E 1(1-p -- 0

This set does not depend on p itself. We look for a pair
P = P, = v such that according to Eq. 4 (with p = 0),

p" = = 0. The first is satisfied if

V2 WV + (M+Cm(p2)) 0 (5)
0

or

(w= 2 -4(M+Em(p ))
2 0

(provided, of course, that this is real).

The second is satisfied if, simultaneously

Hv - wT = 0 (6)

To investigate the behavior in the neighborhood of such a
periodic solution, we shall, temporarily set p = p 0 + x,,

= x2, • = v + X3 and expand system 4.

2
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x 2x
•1 = 2

2P0xx3 - OP x 3

{Hx:P mx:I 1 0 (7)
2p 0v

29

+ 0(x2)

-2x + x 2

poX = + [-HPX H'PVx + wPT'x]P0 x3 0 3 -HP0 1 0 1

+ 0(x 2 ) + EP2VX,/(l-p2 )

2

with 22 = V c -4(M+Em) = 2P - C. It is well known that for
a system such as

x = Ax + 0(x2)

where x is a vector and A a constant matrix, that the
behavior of the solutions near x = 0, including stability
criteria, is characterized by the roots of the 'secular
equation' det IA-XEI = 0, at least when det JAI # 0. For
simplicity, and to be able to compare directly with pages 26
and 27 of Ref. 1, we will specialize to H = constant, m = 0.

The secular equation is then (we also neglect EpO2/'(l-p0 ))

X + 2EHX2 + [49'+E 2H] X 22Eop 0T' = 0 (8)

The periodic solution is stable if and only if the real part•
of all three roots of Eq. 8 are negative, which in turn is

true if and only if (neglecting the E term),

H > 0, w Rp 0T1 < 0

H + wp0 T'/42 > 0

3
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(of which the first happens to be a consequence of the second
and third). We can even find approximate values for the roots

X 1 fEcop 0 T/29

X2 ,0 - ± 2in - E(H+wp0T?/49)

Equations 65 and 66 of Ref. 1 lead to only two roots:

I= EWp T'/22
0

12 =. - (H+WPoT'/4e)

Now let P,= w/2 + 9, v2 = w/2 - Q 4Q•• = - 4M, and

suppose 2 ý 0. Make the transformation

z g1 +r2 ei
ig I i• o

Z =r 1 e +ir 2 V2 e

with the understanding that neither rI nor r2 is zero. Just

as in Ref. 1, we obtain, setting

01 = + % 2 = ý1 "

+= P " 2 + E 0 (r'r 2'0 2) + 0(EW)

2
= P R ( + E 0 ( ) + 0(2)

R (r 0 + 0(E 2 )

2  • -V 2 H (10)

S(-Hv+wT)rl + Lip2sncJT 5 LO2RI /(Hg! i -m sin 0 2

1R 2 1 22

+ r1 r2 (VI' -zV' )sin0 (r 1 +r 2 2coso 2)

1 - 62
! -I[(HP I- wT)coOs02'0 1

f(HP2 "WT)r 2 + m sin 022
I{2)1 I I O

2 r 1 r 2 (V 1 -" 2 )sino 2 (r2V2+r' 1 coso 2)

2
1 - 6
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with 6d = r 1 + r,2 + 2rIr2 cos 02' mP H and T functions of 6

The right-hand sides of all four equations are independent
of 01, so we may consider the last three alone. ®i and Ri

are of period 2r in 03. Let

HI = 2-S H dO

H2 _L= H cosO dO
2 •27r

7 2 7r T dO
0

TY 0 T cosO dO

We find that

R= 2 T R dO = - (H)v OT r - v(i TJ) rO
1 27r YO 1 1 1 2 2 2 2

Y= 21• R dO = (Hv-W ) rW + (H v -T ) rC

27r ~ 2 1 2 1 2 2 1 2 1

Suppose we can find a pair r 1 0, r2 0 such that both R, and R2
1 2

are zero. We can then apply a theorem of Poincare (see
theorem 5.2 of Ref. 2) to the effect that, (subject to cer-
tain differentiability conditions) if also the determinantaR.
of the matrix 7.is not zero, there is an E > 0 such that

for IEI < E a solution does exist for which r1 and r are

periodic functions of 02, and therefore of the time, 02 in-

creasing (if v1 > v ) strictly monotonically.

The zi, z 2 ý 1 and $ calculated from this r (02 ), r (0 )
and the first of Eq. 10 define just such a periodic surface
as we were looking for.

5
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Let the matrix 8R./ar. = A, It can be shown that the
1 J

character of the family of solutions sufficiently near such
a periodic surface is determined by the roots of
det IA-XEJ = 0 in the usual way.

Applying these results to the case discussed on pages 28
to 30 of Ref. 1, one obtains identical conclusions.

We see that the methods of Ref. 1 are thoroughly justi-
fied, in a perturbation theory sense, insofar as they deal
with the 'singular points' of the 'amplitude plane' and
their neighborhoods, subject to a minor modification when
the critical point is on an amplitude axis (rI or r 2 zero).

It is possible to extend this treatment to cover the
cases of strongly nonlinear moments, but small yaw, dis-
cussed in Ref. 3. It is even possible*to include all the
kinematic nonlinearities (such as the 0/, term) in the
zeroth approximation as well. One proceeds as follows:
Write the equation

z - [iw+/1] z - •Mz + E[HZ-(m+i•wT)z] = 0

Then set zi = sinp cosp, z2 = cosp sing, and finally

'p= cosp. One obtains a pair of equations for p and ,

which are essentially those of Ref. 4. We can search for a
steady state solution of this pair just as before. We can
even take c = 1 and get an answer. This procedure, and the
calculation of stability criteria is carried out in Ref. 4.

Now define

u = cosp

P p
v =- 2 M sinp dp = 2 Mdu

0 1

h=p + • sin2 P + v

q = ý sin2 p + w u

h and q are closely related to C and C0, respectively, of

Ref. 3. We will find that both h and q are of order E, and
both are well behaved functions of u, u, h and q. Further-
more

6



NOTS TP 3251

.2 2 2u- (1-u ) (h-v) - (q-wu) F(u,hq)

If on the interval [-1,1•, F(u,h,q) has two simple roots
separated by an open interval on which P > 0, then if h and
q were constant, u would have a periodic solution P(thq)
of period l/v(hq). Use that one for which u(0) = u1 = least

of the pair of roots.

Let p(ohq) = P(v(hq)ehq). Now set u = p(o•h~q),

=v(h,q) - p(oh,q).

Sand q are now functions of 0, h and q, and 0 may be
calculated from

P =u= 0 p + h Ph + qp

= z(h,q) hh+qPq
PO

It can be shown that this expression is well behaved even at
0 = 0 and 1/2 where u = vp0 = 0. We have in fact obtained

a system

0= v(h,q) + E ® (e,h,q)

h E = H(o,h,q) (11)

S= �E Q(0,h,q)

with 0, H and Q periodic (of period 1) in 0. Theorem 5.2 of
Ref. 2 may again be applied with entirely similar results.

A detailed discussion of the more general version of the
problem is given in Ref. 5. Because it is possible to re-
duce the problem to third order (the last three equations of
10 or the set 11), the theory of periodic surfaces has not,
in fact been needed, but only that of periodic solutions.
On the other hand, if the right side of Eq. 11 or 3 is a
constant G # 0, the full theory of periodic surfaces is
required to deal with the question of steady mixed modes.
A discussion of some simple cases with G 7 0 is contained in
Ref. 6.

7
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